NFPA20
Standard for the Installation of Stationary Pumps for Fire Protection
Purpose of a Fire Pump

- To protect lives and properties against fire by supplying an adequate water supply to automatic sprinklers or standpipe systems
- To meet building codes and insurance requirements
Codes and Standards

National Fire Protection Association - NFPA
- Establishes the norms that governs all fire installation
- Continuously revises the codes (Last issue 2003)
Listing Authorities

- Underwriters Laboratories (UL)
- Underwriters Laboratories of Canada (ULC)
- Factory Mutual Research Corporation (FM)
Codes and Standards

NFPA Philosophy

- A fire pump system should operate irrespective of any damage it may cause to itself
- No element of the system under emergency conditions should:
 - Prevent a fire pump from turning on
 - Cause a fire pump to turn off
- Changes to the code must be substantiated by data or experience (actual scenarios)
Codes and Standards

NFPA20 Structure:
- Definitions (3 pages)
- Centrifugal Fire Pumps (5 pages)
- Positive Displacement Pumps (2 pages)
- Electric Motors (1 page)
- Diesel Engines (4 pages)
- Controllers (12 pages)
- Pump Installation and Related Components (10 pages)
- Acceptance Tests and Maintenance (2 pages)
Water Supply

– Where fire pumps are installed on a city main, a fire flow test should be performed to determine minimum and maximum supply pressures as well as suitability of supply for the fire protection system

– Where adequate city supply water is unavailable, a suction tank or pit should be installed

– Tank sizing must consider 150% of the fire pump rated flow

– Total water requirements are defined in NFPA13 (Sprinkler Systems), NFPA14 (Standpipe Systems), NFPA15 (Spray or Mist Systems), Mains)
Pump Requirements

“Centrifugal fire pumps shall be listed for fire protection service.”

“Pumps shall furnish not less than 150% of rated capacity at not less than 65% of total rated head. The shutoff head shall not exceed 140% of rated head for any type pump.”
Pump Requirements

%Rated Head

Max Shutoff Head

140%
100%
65%

%Rated Flow

100% 150%

65%
Pump Sizing

“A stationary pump for fire protection should be selected in the range of operation from 90 percent to 150 percent of its rated capacity. The performance of the pump when applied at capacities over 140 percent of rated capacity can be adversely affected by the suction conditions. Application of the pump at capacities less than 90 percent of the rated capacity is not recommended. The selection and application of the fire pump should not be confused with pump operating conditions. With proper suction conditions, the pump can operate at any point on its characteristic curve from shutoff to 150 percent of its rated capacity.”
Pump Sizing

- Pump Rated Flow
- Pump Design Flow

Head vs Flow graph:

- 100%
- 90%
- 100%
- 150%
Misinterpreted Code Requirement

- Sizing the fire pump - a listed pump should be applied for flows from 90% to 150% of its rated point
- Most fire pumps are sized to exceed the duty requirement of the fire protection system
- The rated flow is a convention used to regulate the listing of pumps
Pump Requirements

- FM & UL require that fire pumps have packing seals
- ULC allows mechanical seals
- Packing requires periodic adjustment and replacement as it hardens over time
- The packing gland should be tightened until the seal leaks 30 drips per minute
- If the gland is tightened too much, the seal receives no lubrication and will burn
Allowable Pump Types

- Horizontal Split Case
- Vertical In-Line
- End Suction
- Vertical Turbine
Horizontal Split Case Fire Pumps
HSC Fire Pumps

BENEFITS
- Available in a wide flow and head range
- Serviceable without disturbing piping or driver
- Available in electric or diesel drive

DRAWBACKS
- Large floor space requirement
- Restricts mechanical room layout due to direction of rotation
- More costly
- More difficult to service
Vertical In-Line Fire Pumps
VIL Fire Pumps

BENEFITS
- Compact
- Serviceable
- Reliable
- Cost Effective

DRAWBACKS
- Only available up to 1500GPM
- Electric Drive Only
- Requires suction strainer
End Suction Fire Pumps
End Suction Fire Pumps

BENEFITS
- Moderate floor space requirement
- Flexibility in mechanical room layout
- Available in electric or diesel drive
- Serviceable

DRAWBACKS
- Only available up to 1500gpm
- Single suction design limits hydraulic efficiency
Vertical Turbine Fire Pumps

- Used where a flooded suction cannot be maintained.
- Underground water sources or below ground tanks with above ground pump room.
Vertical Turbine Fire Pumps

BENEFITS
- Will operate under suction lift
- Available in electric or diesel drive
- Available over wide flow and head range

DRAWBACKS
- More costly
- More difficult to service and install
Typical Application
Wet Pit - Electric
Motor Driver
Typical Application
Wet Pit - Diesel Engine Driver

NOTE:
1. Linear measured distance between the two check valves containing same direction shall not be less than 3'-3" per sheet 20.
NFPA Required Pump Accessories

Air Release Valve

Pressure Relief Valve
- three pressure ranges
- adjustable on site

Suction & Discharge Gauges

TRANSFER SWITCH

PREPUMP CONTROLLER
NFPA Required Pump Accessories

- Suction gauge must be of the compound type (capable of reading negative pressure or vacuum)
- Discharge gauge must read two times the working pressure of the pump and not less than 200psi
1/2” Air Release Valve is required

Exception: top centre-line discharge end suction and vertical fire pumps
Casing Relief Valve

- 3/4” up to 2500usgpm
- 1” over 3000usgpm
- Should be set between the maximum suction pressure and minimum suction pressure plus the closed valve pressure of the pump
- Piped before the fire pump discharge check valve
Isolation Valves

- Suction OS&Y Gate Valve
- Discharge Butterfly Valve
- Both must be supervised
- Discharge Butterfly Valve Installed after “Test Tee” and pressure sensing line
Hose Valve Systems

- Provides testing means
- Sized by pump rated capacity
- There are hundreds of different thread types depending on jurisdiction
 - type should be specified on projects
Flow Meters

– Does not replace a hose valve system
– Flow meters must be listed for fire protection service
– Gauge reading is a minimum of 175% the pump rated flow
– Provides a testing means without wasting water
– Flow meter is installed in bypass back to suction
– Must be installed with isolation valves per manufacturer’s specifications

– RULE OF THUMB:
 Annular Type - 10Ø upstream - 5Ø downstream
 Venturi Type - 7Ø upstream - 5Ø downstream
Main Relief Valves and Waste Cones

- Sized by pump rated capacity
- Spring or pilot operated
- Waste cone provides visibility of flow through the valve
- When it is used:
 1) Diesel driven systems
 2) Electric systems
Main Relief Valve - Diesel Pumps

Shutoff Head @10% Overspeed

Shutoff Head @Rated Speed

psi

179
165
130
30
20

GPM

1000
1500
Main Relief Valves and Waste Cones

- Recommended on all diesel driven systems
- Not required on diesel if maximum supply pressure plus 1.21 x closed valve pressure does not exceed system pressure rating
- NFPA allows piping back to suction - NOT recommended
- Relief valve should be set below maximum pressure rating of the system
Main Relief Valve -
Electric Pumps

psi
180
130
60
20

1000 1500 2000
GPM

Max Shut Head
Rated Head
Misinterpreted Code Requirement

- Devices in the discharge piping - main relief or pressure reducing valves should only be installed where absolutely necessary
- Valves introduce a failure mode and should only be used when required
Piping, Relief Valves, Metering Devices, and Hose Valves should be sized according to Table 2-20 on Page 20-13.
NFPA Required Pump Accessories

<table>
<thead>
<tr>
<th>Fire Pump Rating GPM (L/s)</th>
<th>Suction Size (in.)</th>
<th>Discharge Size (in.)</th>
<th>Relief Valve Size (in.)</th>
<th>Relief Valve Discharge (in.)</th>
<th>Flow Meter Size (in.)</th>
<th>Number & Size of Hose Valves</th>
<th>Hose Valve Manifold Size (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 (95)</td>
<td>1</td>
<td>1</td>
<td>¾</td>
<td>1</td>
<td>1/4</td>
<td>1 & 1½"</td>
<td>1</td>
</tr>
<tr>
<td>50 (189)</td>
<td>1½</td>
<td>1¼</td>
<td>1¼</td>
<td>1/2</td>
<td>2</td>
<td>1 & 1½"</td>
<td>1½</td>
</tr>
<tr>
<td>100 (379)</td>
<td>2</td>
<td>2</td>
<td>1½</td>
<td>2</td>
<td>2½</td>
<td>1 & 2½"</td>
<td>2½</td>
</tr>
<tr>
<td>150 (568)</td>
<td>2½</td>
<td>2½</td>
<td>2½</td>
<td>2½</td>
<td>3½</td>
<td>1 & 2½"</td>
<td>3½</td>
</tr>
<tr>
<td>200 (757)</td>
<td>3</td>
<td>3</td>
<td>3½</td>
<td>3½</td>
<td>3½</td>
<td>1 & 2½"</td>
<td>3½</td>
</tr>
<tr>
<td>250 (946)</td>
<td>3½</td>
<td>3½</td>
<td>3½½</td>
<td>3½</td>
<td>3½½</td>
<td>1 & 2½"</td>
<td>3½½</td>
</tr>
<tr>
<td>300 (1136)</td>
<td>4</td>
<td>4½</td>
<td>3½½</td>
<td>3½</td>
<td>3½½</td>
<td>1 & 2½"</td>
<td>3½½</td>
</tr>
<tr>
<td>400 (1514)</td>
<td>4</td>
<td>4½</td>
<td>4½½</td>
<td>4½</td>
<td>4½½</td>
<td>1 & 2½"</td>
<td>4½½</td>
</tr>
<tr>
<td>450 (1703)</td>
<td>5</td>
<td>5½</td>
<td>5½½</td>
<td>5½</td>
<td>5½½</td>
<td>1 & 2½"</td>
<td>5½½</td>
</tr>
<tr>
<td>500 (1892)</td>
<td>5</td>
<td>5½</td>
<td>5½½</td>
<td>5½</td>
<td>5½½</td>
<td>1 & 2½"</td>
<td>5½½</td>
</tr>
<tr>
<td>750 (2839)</td>
<td>6</td>
<td>6½</td>
<td>6½½</td>
<td>6½</td>
<td>6½½</td>
<td>2 & 2½"</td>
<td>6½½</td>
</tr>
<tr>
<td>1000 (3785)</td>
<td>8</td>
<td>8½</td>
<td>8½½</td>
<td>8½</td>
<td>8½½</td>
<td>2 & 2½"</td>
<td>8½½</td>
</tr>
<tr>
<td>1250 (4731)</td>
<td>8</td>
<td>8½</td>
<td>8½½</td>
<td>8½</td>
<td>8½½</td>
<td>2 & 2½"</td>
<td>8½½</td>
</tr>
<tr>
<td>1500 (5677)</td>
<td>8</td>
<td>8½</td>
<td>8½½</td>
<td>8½</td>
<td>8½½</td>
<td>2 & 2½"</td>
<td>8½½</td>
</tr>
<tr>
<td>2000 (7570)</td>
<td>10</td>
<td>10½</td>
<td>10½½</td>
<td>10½</td>
<td>10½½</td>
<td>2 & 2½"</td>
<td>10½½</td>
</tr>
<tr>
<td>2500 (9462)</td>
<td>10</td>
<td>10½</td>
<td>10½½</td>
<td>10½</td>
<td>10½½</td>
<td>2 & 2½"</td>
<td>10½½</td>
</tr>
<tr>
<td>3000 (11,355)</td>
<td>12</td>
<td>12½</td>
<td>12½½</td>
<td>12½</td>
<td>12½½</td>
<td>2 & 2½"</td>
<td>12½½</td>
</tr>
</tbody>
</table>
Pressure Maintenance Pump (Jockey)

- Every system has a normal leakage rate that will result in a pressure drop.
- Jockey Pump will maintain the pressure in the system.
- This will prevent the main fire pump from starting for minor leaks.
Jockey Pumps

Jockey (pressure maintenance) pumps and jockey controllers need not be listed for fire protection service.

“The primary or standby fire pump shall not be used as a pressure maintenance pump.”

A jockey pump should be sized such that it CANNOT meet the flow demand of a single sprinkler fixture.
Jockey Pump Sizing

- Jockey pumps should be sized for 1% of the flow of the main fire pump.
- Jockey pumps should be sized to provide 10psi more pressure than the main fire pump.
- Jockey pump should be sized so that it cannot meet the demand of the lowest flow fire protection fitting in the system.
Fire Pump Operation

- Fire pumps are designed to start on a pressure switch setting
- Some fire pumps can be started automatically based on a deluge valve opening, or a remote signal
- The pressure sensing line is the lifeline for the fire protection system
Fire Pump Operation

- Pressure switches should be rated for maximum pressure conditions
- Sensing lines must be 1/2” non-ferrous (copper) with two check valves with a 3/32” hole drilled in the flapper
- Check valves are for damping of pressure when the pump starts to protect the pressure switch
- Check valves are installed 5 feet apart and must open on a pressure drop in the sensing line
- Check valves close when the pump starts
- Jockey pump and fire pump sensing lines must be separate
Fire Pump Operation

- System gradually loses pressure
- Jockey start
- Fire Pump start

Stop Point
Pump shutoff

psi

boost

Time period

- Extensive changes to NFPA20 including chapter numbers
- Fire pump sizing will move from the Appendix to the main text of the code
- Greater clarity on devices in the discharge piping
- Provisions for the acceptance of electronic speed governors on diesel engines
- Reference to NEMA ICS 14-2001 as Appendix B (Application Guide for Electric Fire Pump Controllers)

- Diesel tank supervision and markings
- Alternate valve arrangement for diesel cooling lines
- Provision for reading amperage and voltage on limited service controllers
- Variable speed drivers as pressure limiting devices
- Copper lines and fittings not allowed for diesel piping
Typical System Performance - 500gpm, 160psi
including 85psi Suction Pressure
FIRE PUMP CONTROLLERS

- Diesel or Electric
- Full Service or Limited Service
- HP of the motor
- Voltage of the installation
- Withstand rating
- Starting method
CONTROLLER STARTING METHOD

- Across the Line
 - Limited Service - Under 30hp
 - Full Service

- Reduced Voltage
 - Auto Transformer
 - Wye Delta - Special Motor Required
 - Part Winding - Special Motor Required
 - Primary Resistor
CONTROLLER STARTING METHOD

- FULL VOLTAGE
- PART WINDING
- PRIM. RESISTOR
- AUTO-TRANSFORMER
- WYE DELTA
- FULL LOAD CURRENT

% of Full Load Current

- 600
- 420
- 390
- 252
- 200
- 100

Full speed
AUTOMATIC TRANSFER SWITCHES

What is it?
- An additional controller used in case of a power failure

Why use it?
- To transfer the power to another source (generator or diesel)

When to use it?
- If Authorities Require One
- If Power Source not Reliable
DIESEL CONTROLLERS

Serve Three Basic Functions:

- Start the Diesel Engine in an emergency
- Monitor the Operation and Condition of the Diesel Engine
- Keep the batteries charged
Diesel Can be Started by Three Methods:
- Pressure Switch (In the Automatic Mode)
- Pressure Switch (In the Test Mode)
- Manual Cranking (In the Automatic or Manual Mode)

Starting sequence:
- Alternating cranking sequence
- Six cranks every 30 seconds until diesel starts
- If diesel fails to start, an alarm is activated
Diesel Can be Stopped by Two Methods:
• Manually by Pushing the Stop Button
• Automatically after 30 minutes during weekly test

Overspeed shutdown:
• A diesel fire pump will shut down in an emergency condition if the diesel operates more than 20% faster than the rated speed
Diesel Controller Alarms

• Battery and Charger Failures
• Diesel operating condition (High Coolant Temperature, Low Oil Pressure, Overspeed, Failure to Start)
• Contacts for remote indication of alarm conditions
• Optional Pump Room Alarms (Low suction pressure, flow meter on, Main Relief Valve open, Low/High Pump Room temperature, Low fuel level, Others)
Battery Charging Systems:

- One charger for each set of batteries
- Chargers are capable of fully charging the batteries in 24 hours
- Batteries remain in an overcharged condition
Pump Maintenance

- Pump acceptance tests are defined in NFPA20 Chapter 11
- Inspection and maintenance are defined in NFPA25 Chapter 5
- Seals and bearings are the highest maintenance item for a pump
- The packing should be checked and adjusted each time the pump is tested
- As fire pumps do not run often, bearings should be checked for cleanliness and to ensure that adequate oil or grease has been applied (depending on the type of bearing)
- Motor bearings should also be checked
Thank you!